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LETTER TO THE EDITOR 

Self-similarity of the loop structure of diffusion-limited 
aggregates 
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f Department of Atomic Physics, Eotvos University, Budapest, PO Box 327, 1445 Hungary 
$ Institute for Technical Physics, Budapest, PO Box 76, 1325 Hungary 

Received 10 May 1990 

Abstract. The structure of fjords in diffusion-limited aggregation (DLA)  clusters can be 
described in terms of the loop size distribution n R ( x )  which is the normalised number of 
loops with a neck to depth ratio x within a circle of radius R centred at the origin of the 
cluster. We find from the numerical study of very large off-lattice aggregates that n R ( x )  
converges quickly to a limiting distribution with a well defined smallest ratio x,,, larger 
than zero indicating the self-similarity of the loop structure. If the fjords are self-similar, 
i.e. they do not have long, tube-like structures, one does not expect a phase transition in 
the multifractal spectrum of growth probabilities of typical DLA clusters generated on the 
plain. Our study is essentially statistical and we cannot rule out the possibility of such 
‘rare events’ (e.g. the occurrence of a few loops with anomalously small x )  which may 
result in a qualitatively different behaviour concerning the multifractal spectrum. 

The recent intense interest in the properties of diffusion-limited aggregation ( DLA) 

clusters (Witten and Sander 1981) has been motivated by both the applicability of the 
DLA model to real physical phenomena (Meakin 1987, Stanley and Ostrowsky 1989, 
Vicsek 1989) and the rich scaling behaviour of the aggregates themselves. The related 
studies have revealed the complexity of the geometry of diffusion-limited aggregates 
which, in turn, is responsible for the complicated nature of such physical quantities 
as the distribution of the growth probabilities (see, e.g., Amitrano et al 1986, Hayakawa 
et al 1987). 

In particular, it has been shown that the DLA clusters are fractals (Mandelbrot 
1982) with anisotropic density correlations (Meakin and Vicsek 1985, Kolb 1985) 
expressing the geometrical constraint that a growing aggregate is bound to develop 
branches advancing preferably in the radial direction. Such a structure can be described 
in terms of a hierarchy of open loops which form deep fjord-like structures. The 
directedness of the branches does not violate self-similarity, however, it has relevant 
consequences concerning the growth probability distribution (Mandelbrot and Vicsek 
1989). 

The distribution of growth probabilities pi is defined as the probability that the 
next particle is added at site i. The question whether the set of pi represents a fractal 
measure has been addressed by many recent papers leading to a controversy concerning 
the possibility of a phase transition in the corresponding multifractal spectrum (in the 
following we shall consider the two-dimensional case without the loss of generality). 

Early numerical work (Amitrano er al 1986, Hayakawa e? a1 1987) indicated the 
existence of a regular spectrum f ( a ) ,  where f ( a )  denotes the fractal dimension of the 
set of growth sites with growth probabilities p = L-*, where L is the linear size of the 
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aggregate. For a ‘regular’ multifractal spectrum there exists a largest a such that 
f ( a ) s O  for any singularity exponent larger than this cyrnax. This corresponds to a 
situation in which the smallest growth probability can be expressed in the form 

pmin - L-‘max. (1) 

In the view of a few very recent studies, however, further possibilities leading to the 
breakdown of the above standard multifractal behaviour should be considered. In an 
exact enumeration study Lee and Stanley (1988) obtained a behaviour qualitatively 
different from (1) for a complete ensemble of small DLA clusters. Similar conclusions 
were made in the investigations of aggregate-like Julia sets (Bohr et a1 1988) and 
typical diffusion-limited aggregates (Blumenfeld and Aharony 1989, Havlin et a1 1989). 
If the growth sites are extremely strongly screened one can assume that their prob- 
abilities to grow tend to zero exponentially with the linear size of the aggregates 

where a is some constant. The most recent numerical results (Schwarzer et al 1990), 
however, suggest that the scaling of the smallest growth probability is given by the 
expression 

(3) -b(ln L ) 2  
Pmin  =e e 

with b being a constant. Before describing our results we discuss the geometrical 
pictures corresponding to the behaviours given by (1-3) and the consequence of (1-3) 
regarding the multifractal spectrum. 

( i )  pi scales as indicated by (1) if, as it has been argued (Mandelbrot and Vicsek 
1989, Harris and Cohen 1990), the structure of the aggregates is such that there are 
always wedge- or cone-shaped major fjords which lead to the most screened sites. 

(ii) The growth probability becomes exponentially small (2) in clusters consisting 
of long ‘tubes’. The main feature of these tubes needed for (2) is that the ratio x = w / l  
of their width w to their length 1 goes to zero with the size of the clusters as 1/L. In 
this case there is a phase transition in the multifractal spectrum at some a where f ( a )  
becomes non-analytic. Since (2) corresponds to contributions coming from arbitrary 
large a, and the multifractal spectrum is always convex, it follows from (2) that the 
shape o f f (  a )  is such that after reaching its maximum it remains constant as a + W .  

(iii) Interestingly, (3) results in a phase transition in f ( a )  as well, although the 
growth probabilities go to zero much slower than in the case (ii). This behaviour was 
indicated by numerical determination of pmin for clusters containing 2600 particles 
(Schwarzer et a1 1990). It has been suggested that (3) corresponds to a hierarchy of 
open spaces (loops) whose linear size scales down according to some exponent. 

Since it is the actual structure of the fjords in the aggregates which determines the 
scaling behaviour of the smallest growth probability we have undertaken a large scale, 
detailed study of the geometrical properties of these fjords. We have analysed the 
geometry of eight off-lattice DLA clusters each consisting of one million particles (the 
coordinates of the particles were given to us by P Meakin). The clusters were grown 
using an off-lattice algorithm (Tolman and Meakin 1989), but the configuration was 
stored by relaxing the particles to the closest grid points of an underlying square lattice, 
This means that the smallest possible distance between two particles in the clusters is 
equal to one particle diameter. The caliper diameter of the clusters was about 6000 
lattice units. 
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We assumed that the structure of the clusters can be described in terms of a hierarchy 
of open loops each having a neck of linear size w and a depth 1 (where 1 is the distance 
from the neck to the point which is closest to the origin and belongs to the same loop). 
w and 1 were determined in the following way. A walker was allowed to move along 
the perimeter sites of the cluster, and its position was recorded. Then, each time the 
walker moved towards the centre crossed circles concentric to the origin and of given 
radii Rj,  we stored its position. The neck size was given by the distance of this point 
from the position where the walker crossed the same circle next (moving outward). 
Simultaneously, we recorded the coordinates of the point which was visited by the 
walker between the two crossings and was closest to the origin. In fact, to account for 
overhangs, w was determined taking into account the positions of the walker (moving 
outward) in the layers preceding and exceeding Rj by k lattice units, where k was 
typically equal to 25. 

The structure of loops was investigated by three methods. In the first approach we 
determined the loop size distribution function nR (x) which is the normalised number 
of loops with a neck to depth ratio x = w /  1 up to the radius R. The data were collected 
for increasing radii separated by 50 lattice units. nR(x) was normalised in such a way 
that it could be considered as a probability distribution. The results are displayed in 
figure 1. The main conclusion which can be drawn from this figure is that the normalised 
loop size distribution falls onto the same curve for various R ;  its convergence to a 
limiting distribution is apparent for the sizes considered in our simulations. As one 
can see from this figure 1 there is no tendency for the maximum to be shifted towards 
the smaller ratio values as R is increased which indicates that the average neck to 
depth ratio remains constant. The fact that nR(x) becomes stationary is very important; 
it supports the assumption that the above discussed behaviour is expected to hold in 
the asymptotic regime as well. 

The next figure (figure 2) shows how xmin, the smallest neck to depth ratio, changes 
as R is increased. This figure suggests the saturation of xmin for large R. The data are 
shown up to the radius of 1900 particle diameters, because this is the region within 
which the structure of the cluster can be considered as almost entirely completed. 
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Figure 1. The normalised distribution n R ( x )  of the number of loops with a neck to depth 
ratio x within a circle of radius R. The curves a-e were obtained for R = 500, 1000, 1500, 
2000 and 2500, respectively. 
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Figure 2. This figure demonstrates how the smallest observed ratio x,,, saturates as loops 
within circles of increasing radii are checked. The continuous curve is a fit of the form 
0.222 exp(-O.O038R) + 0.0415 to the data obtained by averaging over eight clusters. 

To indicate saturation, an exponentially decaying function of the form 
0.222 exp(-0.0038R)+0.0415 is fitted to the results. Because of the nature of our 
algorithm, it is possible that some of the anomalous places in the cluster are not located 
in our approach. Therefore, the data in this figure should be regarded as corresponding 
to an overall behaviour rather than showing the rare events. 

Finally, we determined for various values of R the average size wo of those necks 
which belonged to large loops. In these calculations only those necks were considered 
from which the perimeter walk directly reached sites being within a circle of radius 
r = 30 centred at the origin (i.e., the depth of these necks was R - r ) .  The middle curve 
in figure 3 shows the data obtained by averaging the size of such necks, first, over a 
single cluster, and then over eight clusters. The lower plot corresponds to the minimum 
neck sizes for each R averaged over the clusters. The upper plot shows similar data 
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Figure 3. Results obtained by calculating the average neck sizes w,, (see the text) for various 
radii R. The three curves correspond to the behaviour of the largest ( x ), average (0) and 
the smallest (A) necks. 
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for the largest necks. Again, this figure is consistent with the existence of fjords having 
a finite opening angle directly related to the slope of the lower curve. 

In conclusion, we have carried out a large scale study of the geometrical structure 
of fjords in diffusion-limited aggregates. Our results demonstrate that these fjords do 
not contain long, tube-like structures of length proportional to the linear size of the 
aggregates. This information of geometrical origin can be used to make the following 
statement about the growth probability distribution. Since the wedge-shaped structures 
with a finite opening angle result in a power-law scaling of the smallest growth 
probability with the cluster size, our data suggest the absence of a phase transition in 
the multifractal spectrum of DLA clusters grown in two dimensions. However, our 
study is inherently statistical and we cannot exclude the possibility of configurations 
which locally violate overall self-similarity. Such rare events as the occurrence of loops 
with an anomalously small neck to depth ratios (Schwarzer et al 1990) may lead to a 
behaviour (e.g. phase transition) qualitatively different from that implied by the overall 
self-similarity of the fjords. Finally, our findings are consistent with the self-similarity 
of the aggregates themselves, while other types of fjord shapes would correspond to 
a considerably more complicated picture. 

We thank P Meakin for giving us a tape with the coordinates of the large off-lattice 
aggregates making our study possible in this way and H E Stanley for helpful dis- 
cussions. The present research was financially supported by the Hungarian Scientific 
Research Foundation Grant No 693. 
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